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Mateos �Phys. Rev. Lett. 84, 258 �2000�� conjectured that current reversal in a classical deterministic ratchet
is associated with bifurcations from chaotic to periodic regimes. This is based on the comparison of the current
and the bifurcation diagram as a function of a given parameter for a periodic asymmetric potential. Barbi and
Salerno �Phys. Rev. E 62, 1988 �2000�� have further investigated this claim and argue that, contrary to Mateos’
claim, current reversals can occur also in the absence of bifurcations. Barbi and Salerno’s studies are based on
the dynamics of one particle rather than the statistical mechanics of an ensemble of particles moving in the
chaotic system. The behavior of ensembles can be quite different, depending upon their characteristics, which
leaves their results open to question. In this paper we present results from studies showing how the current
depends on the details of the ensemble used to generate it, as well as conditions for convergent behavior �that
is, independent of the details of the ensemble�. We are then able to present the converged current as a function
of parameters, in the same system as Mateos as well as Barbi and Salerno. We show evidence for current
reversal without bifurcation, as well as bifurcation without current reversal. We conjecture that it is appropriate
to correlate abrupt changes in the current with bifurcation, rather than current reversals, and show numerical
evidence for our claims.

DOI: 10.1103/PhysRevE.75.056215 PACS number�s�: 05.45.�a

I. INTRODUCTION

The transport properties of nonlinear nonequilibrium dy-
namical systems are far from well-understood �1�. Consider
in particular so-called ratchet systems which are asymmetric
periodic potentials where an ensemble of particles experi-
ence directed transport �2,3�. The origins of the interest in
this lie in considerations about extracting useful work from
unbiased noisy fluctuations as seems to happen in biological
systems �4–6�. Based on the pioneering analysis of Ref. �7�,
recent attention has been focused on the behavior of deter-
ministic chaotic ratchets �8–12� as well as Hamiltonian
ratchets �13,14�.

Chaotic systems are defined as those which are sensitively
dependent on initial conditions. Whether chaotic or not, the
behavior of nonlinear systems—including the transition from
regular to chaotic behavior—is in general sensitively depen-
dent on the parameters of the system. That is, the phase-
space structure is usually relatively complicated, consisting
of stability islands embedded in chaotic seas, for example, or
of simultaneously coexisting attractors. This can change sig-
nificantly as parameters change. For example, stability is-
lands can merge into each other, or break apart, and the cha-
otic sea itself may get pinched off or otherwise changed, or
attractors can change symmetry or bifurcate. This means that
the transport properties can change dramatically as well. A
few years ago, Mateos �8� considered a periodically forced
underdamped ratchet model, based on work in Ref. �7�. He
looked at the velocity for an ensemble of particles averaged
over time and the entire ensemble. He showed that this quan-
tity, an intuitively reasonable definition of “the current,”
could be either positive or negative depending on the ampli-
tude a of the periodic forcing for the system. At the same
time, there exist ranges in a where the trajectory of an indi-
vidual particle displays chaotic dynamics. Mateos conjec-

tured that the reversal of current direction was correlated
with a bifurcation from chaotic to periodic behavior in the
trajectory dynamics. Even though it is unlikely that such a
result would be universally valid across all chaotic determin-
istic ratchets, it would still be extremely useful to have gen-
eral heuristic rules such as this, allowing some characteriza-
tion of the many different kinds of behavior that are possible.

A later investigation �9� of the Mateos conjecture by
Barbi and Salerno, however, argued that it was not a valid
rule even for the specific system considered by Mateos. They
presented results showing that it was possible to have current
reversals in the absence of bifurcations from periodic to cha-
otic behavior. They proposed an alternative origin for the
current reversal, suggesting it was related to the different
stability properties of the rotating periodic orbits of the sys-
tem. These latter results seem fundamentally sensible. How-
ever, their paper based its arguments about currents on the
behavior of a single particle as opposed to an ensemble. This
implicitly assumes that the dynamics of the system are er-
godic; there was a further invalid assumption about phase-
locking of the dynamics in computing the current. These
assumptions do not hold in general for chaotic systems of the
type being considered. In particular, there can be extreme
dependence of the result on the statistics of the ensemble
being considered. This has been pointed out in earlier studies
�7,8� which laid out a detailed methodology for understand-
ing transport properties in such a mixed regular and chaotic
system. Depending on specific parameter value, the particu-
lar system under consideration has multiple coexisting peri-
odic or chaotic attractors or a mixture of both. It is hence
appropriate to understand how a probability ensemble might
behave in such a system. The details of the dependence on
the ensemble are particularly relevant to the issue of the pos-
sible experimental work on these issues, since experiments
are always conducted, by virtue of finite precision, over finite
time and finite ensembles. It is therefore important to probe

PHYSICAL REVIEW E 75, 056215 �2007�

1539-3755/2007/75�5�/056215�7� ©2007 The American Physical Society056215-1

http://dx.doi.org/10.1103/PhysRevE.75.056215


the Barbi and Salerno results with regard to the ensemble
used, and more formally, to see how nonergodicity alters our
considerations about the current, as we do in this paper.

We report here on studies on the properties of the current
in a chaotic deterministic ratchet, specifically the same sys-
tem as considered by Mateos �8� and Barbi and Salerno �9�.
We show that single-trajectory analysis is inherently flawed
in this context especially because of the existence of multiple
attractors. We then consider the impact of different kinds of
ensembles of particles on the current and show that the cur-
rent depends significantly on the details of the initial en-
semble. We also show that it is important to discard tran-
sients in quantifying the current, therefore emphasizing that
since broad heuristics are rare in chaotic systems, it is critical
to understand the ensemble dependence of the transport
properties of chaotic ratchets. We then proceed to discuss the
connection between the bifurcation diagram for individual
particles and the behavior of the current. We find that while
we disagree with Barbi and Salerno’s analysis and hence
many of their results, the broader conclusion still holds. That
is, it is indeed possible to have current reversals in the ab-
sence of bifurcations from chaos to periodic behavior as well
as bifurcations without any accompanying current reversals
even when the analysis is extended correctly to ensembles.
The result of our investigation is therefore that the transport
properties of a chaotic ratchet are not as simple as the initial
conjecture. However, we do find evidence for a generalized
version of Mateos’s conjecture. That is, in general, bifurca-
tions for trajectory dynamics as a function of system param-
eter seem to be associated with abrupt changes in the current.
Depending on the specific value of the current, these abrupt
changes may lead the net current to reverse direction, but not
necessarily so.

We start below with a preparatory discussion necessary to
understand the details of the connection between bifurcations
and current reversal, where we discuss the potential and
phase space for single trajectories for this system, where we
also define a bifurcation diagram for this system. In the next
section, we discuss the subtleties of establishing a connection
between the behavior of individual trajectories and of en-
sembles. After this, we are able to compare details of specific
trajectory bifurcation curves with current curves, and thus
justify our broader statements above, after which we con-
clude.

II. REGULARITY AND CHAOS IN SINGLE-PARTICLE
RATCHET DYNAMICS

To discover heuristic rules we argue that we must con-
sider specific systems in great detail before generalizing. We
choose the same one-dimensional ratchet previously studied
�8,9�. We consider an ensemble of particles moving in an
asymmetric periodic potential, driven by a periodic time-
dependent external force, where the force has a zero time
average. There is no noise in the system, so it is completely
deterministic, although there is damping. The equations of
motion for an individual trajectory for such a system are
given in dimensionless variables by

�ẍ + bẋ +
dV�x�

dx
= a cos��t� , �1�

where the periodic asymmetric potential can be written in the
form

V�x� = C −
1

4�2�
�sin�2��x − x0�� +

1

4
sin�4��x − x0��� .

�2�

In this equation C, x0 have been introduced for convenience
such that one potential minimum exists at the origin with
V�0�=0 and the term �=sin�2� �x0 � �+ 1

4sin�4� �x0 � �. The
constant � is introduced for convenience in discussing the
difference between the overdamped and underdamped cases
in the next section. We note that the dimensionality of the
variables means that all quantities computed and reported in
our work are dimensionless.

The undamped undriven ratchet—corresponding to the
unperturbed potential V�x�—looks like a series of asymmet-
ric pendula. That is, individual trajectories have one of fol-
lowing possible behaviors as depicted in Fig. 1�a�: �i� Inside
the potential wells, trajectories and all their properties oscil-
late. Outside the wells, the trajectories either �ii� librate to the
right or �iii� to the left, depending upon initial conditions.
There are also �iv� trajectories on the separatrices between
the oscillating and librating orbits, moving between unstable
fixed points in infinite time, as well as the unstable and stable
fixed points themselves, all of which constitute a set of neg-
ligible measure. A nonzero b-dependent damping term in Eq.
�1� makes the stable fixed points the only attractors for the
system. When the driving is turned on, the phase space be-
comes chaotic with the usual phenomena of intertwining
separatrices and resulting homoclinic tangles. Individual tra-
jectories are now very complicated, depending sensitively on
the choice of parameters and initial conditions. We show
snapshots of the development of this chaos in the set of
Poincaré sections in Figs. 1�b� and 1�c� together with a
period-four orbit represented by the center of the circles.

A broad characterization of the dynamics of the problem
as a function of a parameter �a, b or �� emerges in a bifur-
cation diagram. This can be constructed in several different
and essentially equivalent ways. The relatively standard form
that we use proceeds as follows: First choose the bifurcation
parameter �let us say a� and correspondingly choose fixed
values of b ,�, and start with a given value for a=amin. Now
iterate an initial condition, recording the value of the parti-
cle’s position x�TP� at times Tp from its integrated trajectory
�sometimes we record v�TP�= ẋ�TP��. This is done strobo-
scopically at discrete times TP=npT� where T�=2� /� and
nP is an integer 1�nP�M with M the maximum number of
observations made. Of these, discard observations at times
less than some cutoff time ncT� and plot the remaining points
against amin. It must be noted that discarding transient behav-
ior is critical to get results which are independent of initial
condition, and we shall emphasize this further below in the
context of the net transport or current. If the system has a
fixed-point attractor then all of the data lie at one particular
location xc. A periodic orbit with period jT� �that is, with
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period commensurate with the driving� shows up with M
−nt points occupying only j different locations of x for amin.
All other orbits, including periodic orbits of incommensurate
period result in a simply-connected or multiply-connected
dense set of points. For the next value a=amin+da, the last
computed value of x ,v at a=amin are used as initial condi-
tions, and previously, results are stored after cutoff and so on
until a=amin+ �j−1�da=amax. That is, the bifurcation dia-
gram is generated by sweeping the relevant parameter, in this
case a, from amin through some maximum value amax. With
this procedure, it turns out to be critical to sweep the system
both ways, from amax to amin since there is some hysteresis in
the system as well, a point we shall discuss further below.
This procedure is intended to catch all coexisting attractors
of the system with the specified parameter range. We note
that bifurcation diagrams can be constructed using either x or
v: Chaos will be visible at the same place in either variable;
and this is usually true for periodic orbits as well, with the
exception of unbounded trajectories of a certain kind �15�.

Having broadly understood the wide range of behavior for
individual trajectories in this system, we now turn in the next
section to a discussion of the nonequilibrium properties of a
statistical ensemble of these trajectories, specifically the cur-
rent for an ensemble.

III. ENSEMBLES AND CURRENTS FOR A ROCKED
RATCHET SYSTEM

Now let us consider the notion of a “current” for a driven
ratchet described by Eq. �1�. As a preliminary remark, note
that regular trajectories for this are given by

x�t + nT� = x�t� + 2�m , �3�

where �n ,m�� �N ,Z�, and T=2� /� represents the driver pe-
riod. It turns out that for �n ,m=0�, the trajectories of the
system are nontransporting while the case �n ,m�0� leads to
transporting ones. The asymptotic velocity in this case is
constant, independent of initial conditions and can be ex-
pressed as �7�

vnm =
x�t + nT� − x�t�

nT
=

2�m

nT
=

m

n
� . �4�

Depending on the system parameters, the motion can be
bound �vnm=0� or unrestricted with a nonzero velocity
�vnm�0� which then represents the net current flowing
through the system. For the special case of an overdamped
system ��=0�, the dynamics is purely regular. For an ex-
ample of such a system with more than one attractor, which
are, however, zero-current attractors, see Ref. �15�.

The underdamped system ���0, and without loss of gen-
erality �=1� exhibits both regular and chaotic behavior. Fur-
ther, the system may support more than one periodic and/or
chaotic attractor each with distinct basis of attractions. This
possible coexistence of attractors makes the computation of
the current nontrivial, and as we expand below, requires use
of ensembles for the computation. We list the different
classes of trajectories, with distinct transport properties.

�1� Regular trajectories. Regular trajectories are of course
characterized by the velocity �Eq. �4�� or simply by the
tuples �n ,m�. If the system contains only one periodic attrac-
tor, we know that �i� nontransporting trajectories will be
characterized by �n ,0� leading to zero current, while �ii�
transporting trajectories are characterized by �n ,m�0� lead-
ing to a net current. However when there are K attractors in
the system corresponding to different sets �nk ,mk� with k
= �1,2 , . . . ,K	, the net drift must be averaged over these dif-
ferent velocities �vnk,mk

�.
�2� Chaotic trajectories. If the system supports only one

chaotic attractor, then two situations are possible. �i� No net
drift: The average velocity on the attractor, with the particle
moving back and forth, is zero, or �ii� Net drift: This can be
either to the left or to the right, i.e., particles move on aver-
age to the left or to the right, whence the resulting drift is
expected to exhibit strong fluctuations �7�. Given multiple
attractors with complicated basins of attraction, the notion of
transport is clearly well-defined only in the average, particu-
lar as systems typically have coexisting chaotic and regular
attractors. This situation requires careful analysis with
ensemble-based statistical computations, emphasized by the
nonergodicity of the system.

As a result, the analysis of Barbi and Salerno �9� is im-
mediately seen as flawed. In particular, they assume no
transport is possible for a chaotic behavior �see the middle
of the first column, p. 1989 of Ref. �9��. This intuitive physi-
cal picture of theirs is only valid if the system exhibits regu-
lar behavior, and more specifically with only one periodic
attractor �see discussion of regular behavior above�. In par-
ticular, in this situation of regular behavior with a net drift,
the motion becomes effectively locked to the driver. When

8

FIG. 1. �Color online� �a� Classical phase for the unperturbed
system. For �=0.67, b=0.1, and �=1, two chaotic attractors
emerge with �b� a=0.11 and �c� a=0.155. Circles superposed in �c�
represent a period four attractor obtained with a=0.08125.
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more than one attractor is present, this is no longer true.
Further, if one looks carefully at their plots, one can identify
some chaotic areas with nonzero velocity, meaning that there
is transport for chaotic behavior; this in fact makes their
paper self-contradictory. In fact, the system under consider-
ation supports many attractors for some parameters. This is
why when Barbi and Salerno change the initial condition,
they see a change from zero current to a net drift �see their
Fig. 4�. This can also be observed in their Fig. 5 where
hysteresis is highlighted. They ascribe the origin of current
reversals to the different stability properties of the periodic
rotating orbits. However, it is clear that this can be under-
stood as a consequence of using only a single trajectory de-
spite the presence of multiple attractors in the system.

Thus, the net flux of the system is correctly computed
with a suitably broad distribution �7,8�. The current J is then
defined as follows: An ensemble average is performed at a
given observation time tj to yield the average velocity as
�note that for �=1 the momentum is the same as the velocity,
v
 p�

v j =� dp dx p�tj���x,p� . �5�

For any finite ensemble �relevant both computationally and
experimentally� this goes over to the intuitive definition of
Mateos �8�:

v j =
1

N
�
i=1

N

ẋi�tj� . �6�

This average velocity is then further time-averaged; for dis-
crete time tj for observation this leads to

J =
1

M
�
j=1

M

v j , �7�

where M is the number of time observations made. A further
parameter dependence that is being suppressed here is the
shape and location of the ensemble being used.

In the case of multiple periodic attractors we may write
the expression for the current as

J =� dp dx�
i

N

	iIi���x,p�� , �8�

where Ii is the indicator function equalling unity if the point
�x , p� belongs to a basin of attraction of ith attractor and is
zero otherwise, and 	i is the attractor’s winding number.
Clearly different initial distributions will yield different
asymptotic current values J even for this situation. For a
chaotic system, the transport properties of an ensemble are
even more strongly dependent on the part of the phase-space
being sampled. It is therefore important to consider many
different initial conditions to generate a current.

The first straightforward result we show in Fig. 2 is that in
the case of chaotic trajectories, a single trajectory easily dis-
plays behavior very different from that of many trajectories,
although in the regular regime a single trajectory yields es-
sentially the same result as obtained from many trajectories.

Further consider the current in Fig. 3 where we superimpose
the different curves resulting from varying the number of
points in the initial ensemble. First, the curve is significantly
smoother as a function of a for larger N. Even more relevant
is the fact that the single trajectory data �N=1� may show
current reversals that do not exist in the large N data. Also,
note that single-trajectory current values are typically signifi-
cantly greater than ensemble averages since an arbitrarily
chosen ensemble has particles with behaviors which often
average out. However, it is not true that only a few trajecto-
ries dominate the dynamics completely, else there would not
be a saturation of the current as a function of N. All this is
clear in Fig. 3.

The current also depends on the location of the centroid
x� , p� of the initial ensemble, particularly for small N and
trivially for N=1 given a nonergodic and chaotic system.

0 100 200 300 400 500 600 700 800 900 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

N

J

FIG. 2. Current J versus the number of trajectories N for �
=0.67, b=0.1; dashed lines correspond to regular motion with a
=0.12 while solid lines correspond to chaotic motion with a=0.08.
Note that a single trajectory is sufficient for a regular motion while
the convergence in the chaotic case is only obtained if the N ex-
ceeds the threshold, N
Nthr=100.

FIG. 3. �Color online� Current J versus a for different set of
trajectories N; N=1 �circles�, N=10 �square�, and N=100 �dashed
lines�. Note that a single trajectory suffices in the regular regime
where all the curves match. In the chaotic regime, as N increases,
the curves converge toward the dashed one.
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Further, considering a Gaussian ensemble, say, the width W
of the ensemble also affects the details of the current, and
can hide or show false information about current reversal, as
seen in at a�0.15 in Fig. 6�a� for example. Notice further
that in Fig. 5, at a�0.065 and Fig. 6, at a�0.15, the devia-
tions between the different ensembles is particularly pro-
nounced. These points are close to bifurcation points where
some sort of symmetry breaking is clearly occurring, which
underlines our emphasis on the relevance of specifying en-
semble characteristics in the neighborhood of unstable be-
havior. Moreover, these specific bifurcations are associated
with multiple periodic attractors with disjoint basins of at-
traction as is clear from the fact that scanning up in a pro-
duces a different bifurcation diagram than scanning down in
a does. This makes it clear why these regions stand out
among all the bifurcations in the parameter range shown.

To recap: For Hamiltonian �b=0� motion, we know that
there is a typical structure of stable islands embedded in a
chaotic sea which have quite complicated behavior �13�, and
the current always depends on the location of the initial con-
ditions. However, when the damping is turned on the phase
space consists in general of attractors, so if transient behavior
is appropriately discarded, the dependence on location or
spread of the initial conditions can be removed. In particular,
in the chaotic regime of a non-Hamiltonian system, the ini-
tial ensemble needs to be chosen to span the entire phase
space, to ensure convergence. This is also valid for a regular
system of more than one attractor. However, in the regular
regime with only one attractor, it is not important to take a
large ensemble and a single trajectory can suffice �again,
transients must be discarded�. The transient time depends on
system parameters but is usually several times the driving
period T. To account for it, the definition of the current needs
to be modified to

J =
1

M − nc
�
j=nc

M

v j , �9�

where nc is some empirically obtained cutoff such that we
get a converged current �for instance, in our calculations, we
obtained converged results with nc=105, M =107�.

Finally, we reemphasize here the point that currents com-
puted via Eq. �9� do not converge to those computed by
Barbi and Salerno even if all transients are discarded. This is
clear in Fig. 4 where we show results for a single trajectory
used in Eq. �9�. Although this disagrees as expected with the
multiple trajectory calculations in Fig. 5, more importantly it
also disagrees with the “current” computed in the manner of
Barbi and Salerno. In particular, given that there are at least
two attractors in the system, the current computed by letting
a single trajectory find the attractor, as in Eq. �9�, gives us the
jagged curve in the range a� �0.0625,0.07	, emphasizing �a�
why the Barbi and Salerno phase-locking based analysis is
erroneous independent of issues of transience, as well as �b�
why ensembles should be used in general.

Armed with this background, we are now finally in a po-
sition to compare bifurcation diagrams with the current, as
we do in the next section.

IV. RELATIONSHIP BETWEEN BIFURCATION
DIAGRAMS AND ENSEMBLE CURRENTS

Our results are presented in Figs. 5 and 6, in which we
plot both the ensemble current and the bifurcation diagram as
a function of the parameter a. Our observations are labeled
with the letters �a�–�h�, but the main points are distilled into
heuristic statements we label below with Roman numerals
�I�–�IV�.

We now compare our results against the specific details of
Barbi and Salerno’s treatment. In particular, we look at their
Figs. 2, 3�a�, and 3�b�, where they scan the parameter region
b=0.1, �=0, 67, and a� �0.6,0.24�. We note first that �a�
our bifurcation diagrams as shown in Figs. 5�c� and 6�c�
differ from theirs. This is easily understood as a consequence
of “hysteresis.” Recall our discussion of computing the bi-
furcation diagram by using the final condition from the pre-
vious parameter value while scanning the parameter a, and
also recall that we emphasized that it was important to scan
in both directions in a. This is because the disjoint basins of
attractions when a system is bifurcating to multiple attractors
make it possible to entirely miss some attractors in the sys-
tem if this is not done, and this is what seems to have hap-
pened with Barbi and Salerno.

Now turning to the current itself, our computations with
larger numbers of particles N yields different results, as we
show in the recomputed versions of their figures, presented
here in Figs. 5 and 6. Specifically, �b� the single-trajectory
results are cleaner, while the ensemble results, even when
converged, show statistical fluctuations. We clarify here how
we distinguish between current “fluctuations” and “abrupt”
current changes. In the absence of any motivation to be more
complicated, we have looked at changes in the current �J
which happen over a smaller range of the bifurcation param-
eter a than the local trend in J �that is, where the absolute
slope is significantly greater than the average slope�. We
have then used the naïve definition that a change in the cur-
rent is considered a fluctuation when it is substantially

0.06 0.065 0.07 0.075
0

0.01

0.02

0.03

0.04

0.05

0.06

a

J

FIG. 4. �Color online� Current J versus a for a single trajectory
�N=1�, with nc=5�105 time steps discarded from a total M =107

time steps �blue� showing many transitions between the upper and
lower values, compared to Barbi and Salerno’s results �dashed in
magenta� showing a single transition. Here �=0.67 and b=0.1.
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smaller than the “local average.” When �J is of the order of
J or greater, we consider this a relevant change, and classify
it as “abrupt” or “sudden.”

With all this the ensemble results are broadly consistent
with Barbi and Salerno’s disagreement with the Mateos con-
jecture, although different in several important details. For
instance, �c� the bifurcation at a�0.07 has a much gentler
impact on the ensemble current, which has been growing for
a while, while the Barbi-Salerno result changes abruptly.
This growing ensemble current is correlated with the appear-
ance of several other periodic attractors that were missed by
Barbi-Salerno. In the range a� �0.075,0.095� �d� the single-
trajectory current actually seems to validate the Mateos con-
jecture with several current reversals coinciding with period-
doubling bifurcations leading to order-chaos transitions, such
in the approximate ranges a� �0.075,0.076�, �0.08,0.082�,

and �0.086,0.09�. However, there is only one instance of
current-reversal for the ensemble current, at a�0.08, even
though the current shows abrupt changes as a function of
parameter. It is easy to find many examples like this, leading
to the negative conclusion that �I� not all bifurcations lead to
current reversal. Consider also �e� the interesting fact that
the single-trajectory current completely misses the
bifurcation-associated spike at �a�0.11�.

At this point we have not precluded the more restricted
statement that all current reversals are associated with bifur-
cations. However, in Fig. 6 we see �f� current reversals, at
a�0.15, 0.205, and 0.21 that do not seem to be associated
with any bifurcations whatsoever. Note that the difference
between the single-trajectory current and the ensemble-
computed current in the range a�0.17 can be understood by
recognizing the presence of alternate attractors that the
Barbi-Salerno scan had missed. On the other hand, �g� there
is a jump in the ensemble current at a�0.18 that does not
seem related to any bifurcation at all. Finally, �h� apart from
the current reversals mentioned in �g�, the ensemble current
shows other structure in the range a� �0.2,0.22	 that does
not seem to be associated with bifurcations. The single-
current calculation almost entirely ignores this, except for
one jump at a�0.21.

All of this is summarized in two statements: The first is a
reiteration of the fact that there is significant information in
the ensemble current that cannot be obtained from the single-
trajectory current. The second is again a negative heuristic,

FIG. 5. �Color online� Currents J and corresponding bifurcation
diagrams v versus a. In �a� J is computed with an ensemble of
trajectories of different root-mean-square Gaussian width W, start-
ing centered either at the stable fixed point �0,0� or at the unstable
fixed point �−0.375,0�. The blue �topmost� and the black �lower-
most� curves are obtained with trajectories centered at �0,0�, for
W=0.25 and with W=0.5, respectively, while the magenta �middle�
is obtained with trajectories centered at �−0.375,0� and W=0.25. In
�b� we compare our converged results from �a� �shown in magenta�
obtained with trajectories centered at �0,0� and covering the entire
space, W=1, to the single trajectory results �shown in blue� of Barbi
and Salerno. In �c� the bifurcation diagram �blue� is obtained with
increasing a while the bifurcation diagram �red� is obtained
with decreasing a. Here �=0.67, b=0.1, N=103, nc=5�105,
and M =107.

FIG. 6. �Color online� Same as Fig. 5 except for the range of a
considered.
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that �II� not all current reversals are associated with bifur-
cations. One possible way of retaining the Mateos conjecture
is to weaken it, into the statement that �III� most current
reversals are associated with bifurcations. However, a differ-
ent rule of thumb, previously not proposed, emerges from
our studies. This generalizes Mateos’ conjecture to say that
�IV� bifurcations correspond to sudden current changes
(spikes or jumps). Note that this means these changes in
current are not necessarily reversals of direction. If this cur-
rent jump or spike goes through zero, this coincides with a
current reversal, making the Mateos conjecture a special
case. The physical basis of this argument is the fact that
ensembles of particles in chaotic systems can have net di-
rected transport but the details of this behavior depends rela-
tively sensitively on the system parameters. This parameter
dependence is greatly exaggerated at the bifurcation point,
when the dynamics of the underlying single-particle system
undergoes a transition—a period-doubling transition, for ex-
ample, or one from chaos to regular behavior. Scanning the
relevant figures, we see that this is a very useful rule of
thumb, significantly enhancing our ability to characterize
changes in the behavior of the current as a function of pa-
rameter.

In conclusion therefore, the results of this paper could be
summarized as the negative result that even when the flawed
analysis of Barbi and Salerno is corrected to the correct en-
semble methods, the Mateos conjecture does not always
hold. However, we have taken the approach that it is useful
to find general rules of thumb �even if not universally valid�

to understand the complicated behavior of nonequilibrium
nonlinear statistical mechanical systems. In the case of cha-
otic deterministic ratchets, we have shown that it is impor-
tant to factor out issues of size, location, spread, and tran-
sience in computing the “current” due to an ensemble before
we search for such rules, and that the dependence on en-
semble characteristics is most critical near certain bifurcation
points. We have then argued that the following heuristic
characteristics hold: Changes in the dynamics seen in bifur-
cation diagrams for a system correspond to sudden spikes or
jumps in the current for an ensemble in the same system.
Current reversals are a special case of this. However, not all
spikes or jumps correspond to a bifurcation, nor vice versa.
The open question is clearly to figure out if the reason for
when these rules are violated or are valid can be made more
concrete.
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